Linux 块设备驱动代码编写
author:一佰互联 2019-04-23   click:215

按照ldd的说法,linux的设备驱动包括了char,block,net三种设备。char设备是比较简单的,只要分配了major、minor号,就可以进行读写处理了。相对而言,block和net要稍微复杂些。net设备姑且按下不谈,我们在以后的博文中会有涉及。今天,我们可以看看一个简单的block是怎么设计的。

为了将block和fs分开,kernel的设计者定义了request queue这一种形式。换一句话说,所有fs对block设备的请求,最终都会转变为request的形式。所以,对于block设备驱动开发的朋友来说,处理好了request queue就掌握了block设备的一半。当然,block设备很多,hd、floppy、ram都可以这么来定义,有兴趣的朋友可以在drivers/block寻找相关的代码来阅读。兴趣没有那么强的同学,可以看看我们这篇博文,基本上也能学个大概。有个基本的概念,再加上一个简单浅显的范例,对于一般的朋友来说,已经足够了。

闲话不多说,我们看看一个ramdisk代码驱动是怎么写的,代码来自《深入linux 设备驱动程序内核机制》,

#include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h>  #include <linux/fs.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/vmalloc.h> #include <linux/blkdev.h> #include <linux/hdreg.h>  #define RAMHD_NAME "ramhd" #define RAMHD_MAX_DEVICE 2 #define RAMHD_MAX_PARTITIONS 4  #define RAMHD_SECTOR_SIZE 512 #define RAMHD_SECTORS 16 #define RAMHD_HEADS 4 #define RAMHD_CYLINDERS 256  #define RAMHD_SECTOR_TOTAL (RAMHD_SECTORS * RAMHD_HEADS *RAMHD_CYLINDERS) #define RAMHD_SIZE (RAMHD_SECTOR_SIZE * RAMHD_SECTOR_TOTAL) //8mb  typedef struct {   unsigned char* data;   struct request_queue* queue;   struct gendisk* gd; }RAMHD_DEV;  static char* sdisk[RAMHD_MAX_DEVICE] = {NULL}; static RAMHD_DEV* rdev[RAMHD_MAX_DEVICE] = {NULL};  static dev_t ramhd_major;  static int ramhd_space_init(void) {   int i;   int err = 0;   for(i = 0; i < RAMHD_MAX_DEVICE; i++){     sdisk[i] = vmalloc(RAMHD_SIZE);     if(!sdisk[i]){       err = -ENOMEM;       return err;     }          memset(sdisk[i], 0, RAMHD_SIZE);   }      return err; }  static void ramhd_space_clean(void) {   int i;   for(i = 0; i < RAMHD_MAX_DEVICE; i++){     vfree(sdisk[i]);   } }  static int ramhd_open(struct block_device* bdev, fmode_t mode) {   return 0; }  static int ramhd_release(struct gendisk*gd, fmode_t mode) {   return 0; }  static int ramhd_ioctl(struct block_device* bdev, fmode_t mode, unsigned int cmd, unsigned long arg) {   int err;   struct hd_geometry geo;      switch(cmd)   {     case HDIO_GETGEO:       err = !access_ok(VERIFY_WRITE, arg, sizeof(geo));       if(err)         return -EFAULT;                geo.cylinders = RAMHD_CYLINDERS;       geo.heads = RAMHD_HEADS;       geo.sectors = RAMHD_SECTORS;       geo.start = get_start_sect(bdev);              if(copy_to_user((void*)arg, &geo, sizeof(geo)))         return -EFAULT;              return 0;   }      return -ENOTTY; }  static struct block_device_operations ramhd_fops = {   .owner = THIS_MODULE,   .open = ramhd_open,   .release = ramhd_release,   .ioctl = ramhd_ioctl, };  static int ramhd_make_request(struct request_queue* q, struct bio* bio) {   char* pRHdata;   char* pBuffer;   struct bio_vec* bvec;   int i;   int err = 0;      struct block_device* bdev = bio->bi_bdev;   RAMHD_DEV* pdev = bdev->bd_disk->private_data;      if(((bio->bi_sector * RAMHD_SECTOR_SIZE) + bio->bi_size) > RAMHD_SIZE){     err = -EIO;     return err;   }      pRHdata = pdev->data + (bio->bi_sector * RAMHD_SECTOR_SIZE);   bio_for_each_segment(bvec, bio, i){     pBuffer = kmap(bvec->bv_page) + bvec->bv_offset;     switch(bio_data_dir(bio)){       case READ:         memcpy(pBuffer, pRHdata, bvec->bv_len);         flush_dcache_page(bvec->bv_page);         break;                case WRITE:         flush_dcache_page(bvec->bv_page);         memcpy(pRHdata, pBuffer, bvec->bv_len);         break;                default:         kunmap(bvec->bv_page);         goto out;     }          kunmap(bvec->bv_page);     pRHdata += bvec->bv_len;   }    out:   bio_endio(bio, err);   return 0; }  static int alloc_ramdev(void) {   int i;   for(i = 0; i < RAMHD_MAX_DEVICE; i++){     rdev[i] = kzalloc(sizeof(RAMHD_DEV), GFP_KERNEL);     if(!rdev[i]){       return -ENOMEM;     }   }      return 0; }  static void clean_ramdev(void) {   int i;      for(i = 0; i < RAMHD_MAX_DEVICE; i++){     if(rdev[i])       kfree(rdev[i]);   } }  static int __init ramhd_init(void) {   int i;      ramhd_space_init();   alloc_ramdev();      ramhd_major = register_blkdev(0, RAMHD_NAME);      for(i = 0; i < RAMHD_MAX_DEVICE; i++){     rdev[i]->data = sdisk[i];     rdev[i]->queue = blk_alloc_queue(GFP_KERNEL);     blk_queue_make_request(rdev[i]->queue, ramhd_make_request);          rdev[i]->gd = alloc_disk(RAMHD_MAX_PARTITIONS);     rdev[i]->gd->major = ramhd_major;     rdev[i]->gd->first_minor = i * RAMHD_MAX_PARTITIONS;     rdev[i]->gd->fops = &ramhd_fops;     rdev[i]->gd->queue = rdev[i]->queue;     rdev[i]->gd->private_data = rdev[i];     sprintf(rdev[i]->gd->disk_name, "ramhd%c", "a" +i);     rdev[i]->gd->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;     set_capacity(rdev[i]->gd, RAMHD_SECTOR_TOTAL);     add_disk(rdev[i]->gd);   }      return 0; }  static void __exit ramhd_exit(void) {   int i;   for(i = 0; i < RAMHD_MAX_DEVICE; i++){     del_gendisk(rdev[i]->gd);     put_disk(rdev[i]->gd);     blk_cleanup_queue(rdev[i]->queue);   }      clean_ramdev();   ramhd_space_clean();   unregister_blkdev(ramhd_major, RAMHD_NAME); }  module_init(ramhd_init); module_exit(ramhd_exit);  MODULE_AUTHOR("dennis__chen@ AMDLinuxFGL"); MODULE_DESCRIPTION("The ramdisk implementation with request function"); MODULE_LICENSE("GPL"); 

为了大家方便,顺便也把Makefile放出来,看过前面blog的朋友都知道,这其实很简单,

ifneq ($(KERNELRELEASE),) obj-m := ramdisk.o  else PWD := $(shell pwd) KVER := $(shell uname -r) KDIR := /lib/modules/$(KVER)/build all:   $(MAKE) -C $(KDIR) M=$(PWD) modules clean:   rm -rf .*.cmd *.o *.mod.c *.ko .tmp_versions modules.* Module.* endif 

这段代码究竟有没有用呢?可以按照下面的步骤来做,

    a)make 一下,生成ramdisk.ko;

    b)编译好了之后,就可以安装驱动了,在linux下是这么做的,sudo insmod ramdisk.ko;

    c)安装好了,利用ls /dev/ramhd*, 就会发现在/dev下新增两个结点,即/dev/ramhda和/dev/ramhdb;

    d)不妨选择其中一个节点进行分区处理, sudo fdisk /dev/ramhda,简单处理的话就建立一个分区, 生成/dev/ramhda1;

    e)创建文件系统,sudo mkfs.ext3 /dev/ramhda1;

    f)有了上面的文件系统,就可以进行mount处理,不妨sudo mount /dev/ramhda1 /mnt;

    g)上面都弄好了,大家就可以copy、delete文件试试了,是不是很简单。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持网页设计。